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Abstract A family of two stage low computational cost symmetric two-step methods
with vanished phase-lag and its derivatives is developed in this paper.More specifically
we produce:

– a two-stage symmetric two-step eighth algebraic order method which has the
phase-lag and its first, second and third derivatives vanished and

– a two-stage symmetric two-step sixth algebraic order method, which is P-stable
and has the phase-lag and its first and second derivatives vanished.

The local truncation error, the interval of periodicity and the effect of the vanishing
of the phase-lag and its derivatives on the efficiency of the obtained method are also
studied in this paper.
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1 Introduction

The investigation of the approximate solution of special second order initial value
problems of the form:

p′′(x) = f (x, p), p(x0) = p0 and p′(x0) = p′
0 (1)

with solutions which are behaved periodically and/or oscillatory is the subject of this
paper.

We specially give attention to problems with mathematical models which consist
of systems of second order ordinary differential equations of the form (1) (i.e. systems
of second order ordinary differential equations with not explicit appearance of the first
derivative p′.

The basic idea is the introduction of a two stage two-step family of methods with
the following properties:

– maximum algebraic order
– vanished phase-lag and
– vanished derivatives of the phase-lag of maximum possible order
– investigation of the stability of the new family of methods

With this procedure we avoid the Runge–Kutta or Runge–Kutta–Nyström or
Runge–Kutta type (multistage) multistep methods. With these methods and in order
to achieve the same properties as mentioned above we need much more stages and/or
steps (see [1]). The more stages and steps have a consequence of more computational
cost. Our proposed method is of low computational cost since it has only two stages.

Our paper has the following form:

– The phase-lag analysis of symmetric multistep methods and the direct formula for
the computation of their phase-lag are presented in Sect. 2.

– In Sect. 3 the development of the new two stages symmetric two step methods is
presented. More specifically we present the production of a two stages symmetric
two step method with vanished phase-lag and its first, second and third derivatives
and the construction of a two stages symmetric two step P-stable method with
vanished phase-lag and its first and second derivatives .

– The local truncation error is investigated in Sect. 4 using a scalar test problem. For
this problem, asymptotic expressions of the local error and comparison of these
asymptotic expressions with the asymptotic expressions of other methods are also
given. Useful remarks for the local error for this scalar test problem are also given.

– In Sect. 5 the stability and interval of periodicity of the new obtained methods is
studied using a scalar test equation with frequency different than the frequency of
the scalar test equation used for the phase-lag analysis. We give special attention
on the development of the P-stable method of the family.
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– The procedure of the Local Error Estimation is investigated in Sect. 6.1. The Local
Error Estimation is based on the algebraic order.

– The numerical solution of the coupled differential equations arising from the
Schrödinger equation is presented in Sect. 6.2.

– Finally, conclusions are presented in Sect. 7.

2 Phase-lag analysis for symmetric 2m-step methods

We consider the 2m-step methods

m∑

i=−m

ci pn+i = h2
m∑

i=−m

bi f (xn+i , pn+i ) (2)

for the numerical approximation of the initial value problem (1).
The methodology which we use for the numerical solution of the initial value

problem (1) is based on the following algorithm:

– We divide the area of integration [a, b] into 2m equally spaced intervals i.e.
{xi }m

i=−m ∈ [a, b].
– We apply the symmetric 2m-step method (2) within the above defined intervals.
– The area of integration [a, b] is defined based on the physical characteristics of
the problem.

– The quantity h is defined as h = |xi+1 − xi |, i = 1 − m(1)m − 1 and is called
stepsize of integration.

We call the multistep method given by (2), 2m-step method since the number of
steps used for the integration is equal to 2m.

Definition 1 If for the method (2) we have c−i = ci and b−i = bi , i = 0(1)m, then
the method is called symmetric 2m-step method

Remark 1 Themultistepmethod (2) is associated with a linear operator which is given
by:

L(x) =
k∑

i=−k

ci p(x + ih) − h2
m∑

i=−m

bi p′′(x + ih) (3)

where y ∈ C2.

Definition 2 [2] The multistep method (2) is called algebraic of order s if the associ-
ated linear operator L given by (3) vanishes for any linear combination of the linearly
independent functions 1, x, x2, . . . , xs+1.

If we apply the symmetric 2m-step method, (i = −m(1)m), to the scalar test
equation

p′′ = −φ2 p (4)
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we obtain the following difference equation:

Am(v) pn+m + · · · + A1(v) pn+1 + A0(v) pn

+ A1(v) pn−1 + · · · + Am(v) pn−m = 0 (5)

where v = φ h, h is the stepsize and A j (v) j = 0(1)m are polynomials of v.
With the the difference equation (5) is associated a characteristic equation which

is given by:

Am(v) λm + · · · + A1(v) λ + A0(v)

+ A1(v) λ−1 + · · · + Am(v) λ−m = 0. (6)

Definition 3 [3]We say that a symmetric 2m-stepmethodwith characteristic equation
given by (6) has an interval of periodicity (0, v20) if, for all v ∈ (0, v20), the roots
λi , i = 1(1)2m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2m (7)

where θ(v) is a real function of v.

Definition 4 (see [3]) P-stable is called amultistepmethod if its interval of periodicity
is equal to (0,∞). The necessary and sufficient conditions in order a symmetric
multistep method to be P-stable are

|λ1| = |λ2| = 1|λ j | ≤ 1, j = 3(1)2m∀v (8)

Definition 5 Singularly almost P-stable is called a multistep method with interval of
periodicity equal to (0,∞) − S.1

Definition 6 [4,5] For any symmetric multistep method which is associated to the
characteristic equation (6) the phase-lag is the leading term in the expansion of

t = v − θ(v) (9)

The order of phase-lag is q, if the quantity t = O(vq+1) as v → ∞ is hold.

Definition 7 [6] A method is called phase-fitted if the phase-lag is vanished (i.e.
equal to zero).

Theorem 1 [4] The symmetric 2m-step method with associated characteristic equa-
tion given by (6) has phase-lag order q and phase-lag constant c given by

− cvq+2 + O
(
vq+4

)
= 2 Ak(v) cos(k v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v)

2 k2 Ak(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v)

(10)

1 Where S is a set of distinct points.
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Remark 2 The formula (10) must be used for the direct calculation of the phase-lag
for any symmetric 2m-step multistep method.

Remark 3 In our investigation we use symmetric two-step methods. Assuming that
their characteristic polynomials are given by A j (v) j = 0, 1, the phase-lag of order q
with phase-lag constant c are given by:

− cvq+2 + O
(
vq+4

)
= 2 A1(v) cos(v) + A0(v)

2 A1(v)
(11)

3 The new two stages family of symmetric two-step methods

Consider the hybrid family of two-step methods

p̂n+ 1
2

= 1

2

(
pn + pn+1

)
− h2

[
a0 fn +

(1
8

− a0
)

fn+1

]

p̂n− 1
2

= 1

2

(
pn + pn−1

)
− h2

[
a0 fn +

(1
8

− a0
)

fn−1

]

pn+1 − 2 pn + pn−1 = h2
[

b1 ( fn+1 + fn−1) + b0 fn + b2
(

f̂n+ 1
2

+ f̂n− 1
2

)]
(12)

where fi = p′′ (xi , pi ) , i = −1
(
1
2

)
1 and ai , i = 0, 1 b j j = 0(1)2 are free para-

meters.
Applying the method (12) to the scalar test equation (4), we obtain the difference

equation (5) with:

A1(v) = 1 + v2
(

b1 + b2

(
1

2
+ v2

(
1

8
− a0

)))

A0(v) = −2 + v2
(

b0 + b2
(
2 v2a0 + 1

))
(13)

3.1 The two stages family of eight algebraic order symmetric two-step method
with vanished phase-lag and its first, second and third derivatives

We request the above multistage method (12) to have eliminated the phase-lag and its
first, second and third derivatives. Consequently, the following system of equations
holds:

Phase-lag (PL) = T0
T1

= 0 (14)

First derivative of the phase-lag = ∂ P L

∂v
= 0 (15)
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Second derivative of the phase-lag = ∂2P L

∂v2
= 0 (16)

Third derivative of the phase-lag = ∂3P L

∂v3
= 0 (17)

where

T0 = 8 cos (v) v4 b2 a0 − cos (v) v4 b2 − 8 v4 b2 a0 − 8 cos (v) v2 b1
− 4 cos (v) b2 v2 − 4 v2b0 − 4 b2 v2 − 8 cos (v) + 8

T1 = 8 v4 b2a0 − v4 b2 − 8 v2 b1 − 4 b2v
2 − 8

Solving the above system of Eqs. (14)–(17), we can find the coefficients of the new
obtained two stages two-step method: a0, a1, b0, b1, b2. In Supplement Material A
we give the above mentioned coefficients.

For some values of |v| (for example when for some values of |v| the denominators
of the formulae of the coefficients are equal to zero). For these cases and other that the
formulae of the coefficients are subject to heavy cancelations, Taylor series expansions
should be used. In Supplement Material B we give the Taylor series expansions of the
coefficients.

The behavior of the coefficients of the new two stage two-step method is presented
in Fig. 1.

Based on the above coefficients, we can find the local truncation error of the
new developed two stage two-step method (12) (mentioned as T woStageT woStep8)
which is given by:

LT ET woStageT woStep8 = 59

76204800
h10

(
p(10)

n + 4φ2 p(8)
n + 6φ4 p(6)

n

+ 4φ6 p(4)
n + φ8 p(2)

n

)
+ O

(
h12

)
(18)

3.2 The two stages family of sixth algebraic order P-stable symmetric two-step
method with vanished phase-lag and its first, second and third derivatives

Requesting the above multistage method (12) to have vanished the phase-lag and its
first and second derivatives we have to solve the systems of Eqs. (14)–(16). At the same
time and in order the method to be P-stable (and using , we request the characteristic
equation (6) with m = 1 to have as roots:

λ1 = exp(I φ h) = exp(I v), λ2 = exp(−I φ h) = exp(−I v) (19)

Solving the above system of equations we can find the coefficients of the new
obtained two stages two-step P-stable method: a0, a1, b0, b1, b2. In Supplement
Material C we give the above mentioned coefficients.

For some values of |v| (for example when for some values of |v| the denominators
of the formulae of the coefficients are equal to zero). For these cases and other that the
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Fig. 1 Behavior of the coefficients of the new obtained hight algebraic two stage two-step method for
several values of v = φ h

formulae of the coefficients are subject to heavy cancelations, Taylor series expansions
should be used. In Supplement Material D we give the Taylor series expansions of the
coefficients.

The behavior of the coefficients of the new two stage two-step P-stable method is
shown in Fig. 2.

Substituting the above coefficients, we obtain the local truncation error of the new
developed P-stable two stage two-step method (12) with coefficients determined in
Sect. 3.2 (mentioned as T woStageT woStep6) which is given by:

LT ET woStageT woStep6 = 43

205632
h8

(
p(8)

n + 3φ2 p(6)
n

+ 3φ4 p(4)
n + φ6 p(2)

n

)
+ O

(
h10

)
(20)
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Fig. 2 Behavior of the coefficients of the new P-stable two stage two-step method for several values of
v = φ h

4 Local truncation error analysis

In order to investigate the behavior of the Local Truncation Error, we use the scalar
test problem

p′′(x) = (V (x) − Vc + G) p(x) (21)

where

1. V (x) is a potential function,
2. Vc is the constant value approximation of the potential on the specific point x ,
3. G = Vc − E and
4. E is the energy.

We will investigate the behavior of the local truncation error for the following
methods.
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4.1 Classical method (i.e. the method (12) with constant coefficients)

LT EC L = 59

76204800
h10 p(10)

n + O
(

h12
)

(22)

4.2 The new obtained two stage two-step method with vanished phase-lag and
its first, second and third derivatives produced in Sect. 3.1

LT ET woStageT woStep8 = 59

76204800
h10

(
p(10)

n + 4φ2 p(8)
n + 6φ4 p(6)

n

+ 4φ6 p(4)
n + φ8 p(2)

n

)
+ O

(
h12

)
(23)

4.3 Classical method for the P-stable version of the method

LT EC L2 = 43

205632
h8 p(8)

n + O
(

h10
)

(24)

4.4 The new obtained two stage two-step P-stable method with vanished
phase-lag and its first and second derivatives produced in Sect. 3.2

LT ET woStageT woStep6 = 43

205632
h8

(
p(8)

n + 3φ2 p(6)
n

+ 3φ4 p(4)
n + φ6 p(2)

n

)
+ O

(
h10

)
(25)

Our Local Truncation Error analysis is given below:

– We have to apply the local truncation error formulae on the scalar test problem
(21). In order to do this, we have to calculate the derivatives of the function p
based on the problem (21). Some of the expressions of these calculations are given
in the “Appendix”.

– Since the new formulae of the Local Truncation Errors are computed based on the
previous step, they are dependent on the quantities G and energy E .

– Our investigation studies two cases for the quantity G:
1. First Case: Vc − E = G ≈ 0: This is the case in which the Energy is closed

to the Potential. Consequently, all the terms of Gn n ≥ 1 are approximately
equal to zero. Therefore, all the terms in the formulae of the local truncation
error which contain Gn n ≥ 1 are approximately equal to zero. Consequently,
the formulae of the local truncation error consist only the terms with G0 i.e.
which consist with the terms which are free from G. We can observe that for
the above mentioned methods the free from G terms are the same. Therefore,
for this case the asymptotic behavior of the local truncation error formula for
the classical method and the asymptotic behavior of the local truncation error
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formula for the method with vanished the phase-lag and its first, second and
third derivatives is the same. Consequently, in this case and for these values of
G, the methods mentioned above are of comparable accuracy.

2. G 
 0 or G � 0. Consequently, |G| is a large number. For this case , the
most accurate numerical methods are the methods with local truncation error
formula which contain minimum power of G.

– Finally the asymptotic expressions of the Local Truncation Errors are presented.

Based on the above algorithm we found the following asymptotic expansions of
the Local Truncation Errors:

4.5 Classical method

LT EC L = 59

4762800
h10

(
y (x) G5 + · · ·

)
+ O

(
h12

)
(26)

4.6 The new obtained two stage two-step method with vanished phase-lag and
its first, second and third derivatives produced in Sect. 3.1

LT ET woStageT woStep8 = − 59

19051200
h10

[(
4

(
d2

dx2
g (x)

)
g(x) p (x)

+ 3

(
d

dx
g (x)

)2

p (x) + 7

(
d4

dx4
g (x)

)
p (x)

+ 2

(
d3

dx3
g (x)

) (
d

dx
p (x)

))
G2 + · · ·

]
+ O

(
h12

)

(27)

4.7 Classical method for the P-stable version of the method

LT EC L2 = 43

205632
h8 G4 + · · · + O

(
h10

)
(28)

4.8 The new obtained two stage two-step P-stable method with vanished
phase-lag and its first and second derivatives produced in Sect. 3.2

LT ET woStageT woStep6 = 43

51408
h8

[(
d2

dx2
g (x)

)
p (x) G2 + · · ·

]
+ O

(
h10

)

(29)
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The above analysis leads to the following theorem:

Theorem 2 1. Eighth Order Symmetric Two-step Methods
– Classical Method (i.e. the method (12) with constant coefficients): For this

method the error increases as the fifth power of G.
– Two Stage Two-Step Eighth Algebraic Order Method with Vanished Phase-lag

and its First, Second and Third Derivatives developed in Sect. 3.1: For this
method the error increases as the Second power of G.

2. Sixth Order Symmetric Two-step Methods
– Classical Method: For this method the error increases as the fourth power of

G.
– Two Stage Two-Step P-stable Sixth Algebraic Order Method with Vanished

Phase-lag and its First and Second Derivatives developed in Sect. 3.2: For
this method the error increases as the Second power of G.

So, for the numerical solution of the time independent one-dimensional Schrödinger
equation the new developed Two Stage Two-Step Eighth Algebraic Order Method with
Vanished Phase-lag and its First, Second and Third Derivatives is the most efficient
from theoretical point of view, especially for large values of |G| = |Vc − E |.

5 Stability analysis

The interval of periodicity and stability of the newproposed two stage two-stepmethod
is studied in this section. In order to investigate the stability of a symmetric multistep
method, we consider the scalar test equation:

p′′ = −ω2 p. (30)

Remark 4 We note here that the frequency used in the scalar test equation for the
stability analysis (ω) is not equal to the frequency of the scalar test equation used for
the phase-lag analysis (φ) i.e. ω �= φ.

If we apply the new two stege two-step method to the scalar test Eq. (30) we obtain
the following difference equation:

A1 (s, v) (pn+1 + pn−1) + A0 (s, v) pn = 0 (31)

where for the method developed in the Sect. 3.1 we have

A1 (s, v) = T13
T14

, A0 (s, v) = −2
T15
T14

(32)

where s = ω h and v = φ h and

T13 = (cos (v))2 s4v3 − 2 (cos (v))2 s2v5 + (cos (v))2 v7 − 8 cos (v) sin (v) s4v2

+ 8 cos (v) sin (v) s2v4 − 21 (cos (v))2 s4v − 6 (cos (v))2 s2v3

+ 3 (cos(v))2 v5 − 4 sin (v) s4v2 + 4 sin (v) s2v4 + 2 s4v3
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− 4 s2v5 + 2 v7 + 12 cos (v) sin (v) s4 + 60 cos (v) sin (v) s2v2

+ 12 cos (v) s4v − 36 cos (v) s2v3 − 12 sin (v) s4

− 60 sin (v) s2v2 + 9 s4v + 42 s2v3 − 3 v5

T14 = v5
(
(cos (v))2 v2 + 3 (cos (v))2 + 2 v2 − 3

)

T15 = 3 (cos (v))2 v5 + 12 (cos (v))2 sin (v) s4 + 12 (cos (v))3 s4v

− 36 (cos (v))3 s2v3 + (cos (v))2 v7 + 8 cos (v) sin (v) s4v2

− 8 cos (v) sin (v) s2v4 − 24 sin (v) s4v2 + (cos (v))2 s4v3

− 2 (cos (v))2 s2v5 − 12 cos (v) sin (v) s4 − 21 (cos (v))2 s4v

+ 2 s4v3 − 4 s2v5 − 6 (cos (v))2 s2v3 + 24 sin (v) s2v4 − 3 v5

+ 4 (cos (v))2 sin (v) s4v2 − 4 (cos (v))2 sin (v) s2v4

+ 60 (cos (v))2 sin (v) s2v2 − 60 cos (v) sin (v) s2v2

+ 33 s4v − 30 s2v3 + 2 v7 − 24 cos (v) s4v + 72 cos (v) s2v3

while for the method developed in the Sect. 3.2 we have

A1 (s, v) = T16
T17

, A0 (s, v) = 2
T18
T17

(33)

where s = ω h and v = φ h and

T16 = 24 (cos (v))2 s4v − 48 (cos (v))2 s2v3 + 24 (cos (v))2 v5

− 72 cos (v) sin (v) s4 + 48 cos (v) sin (v) s2v2 + 24 cos (v) sin (v) v4

+ 24 cos (v) s4v − 23 cos (v) s2v3 − cos (v) v5 − 192 (cos (v))2 s2v

+ 72 sin (v) s4 − 173 sin (v) s2v2 + sin (v) v4 − 48 s4v

+ 96 s2v3 − 48 v5 + 184 cos (v) s2v + 8 s2v

T17 = v4
(
24 (cos (v))2 v + 24 cos (v) sin (v) − cos (v) v + sin (v) − 48 v

)

T18 = (cos (v))2 s4v + 23 (cos (v))2 s2v3 − 24 (cos (v))2 v5

+ 192 (cos (v))3 s2v − 3 cos (v) sin (v) s4 + 127 cos (v) sin (v) s2v2

− 24 cos (v) sin (v) v4 + cos (v) s4v − 2 cos (v) s2v3 + cos (v) v5

− 184 (cos (v))2 s2v + 3 sin (v) s4 − 2 sin (v) s2v2

− sin (v) v4 − 2 s4v − 46 s2v3 + 48 v5 − 8 cos (v) s2v

Remark 5 The terms P-stable and singularly almost P-stable method is hold in the
cases ω = φ i.e. only when the frequency of the scalar test equation for the stabil-
ity analysis is equal with the frequency of the scalar test equation for the phase-lag
analysis.

The s−v plane for the two stage two-stepmethod produced in the Sect. 3.1 is shown
in Fig. 3.
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Fig. 3 s−v plane of the new produced two stage two-step eighth algebraic order method with vanished
phase-lag and its first, second and third derivatives

Fig. 4 s−v plane of the new obtained two stage two-step P-stable sixth algebraic order method with
vanished phase-lag and its first and second derivatives

The s−v plane for the P-stable two stage two-step method obtained in the Sect. 3.2
is shown in Fig. 4.

Remark 6 The s−v region presented in Figs. 3 and 4 leads to the following remarks:
(1) The method is stable within the shadowed area, (2) The method is unstable within
the white area.
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Remark 7 Based on the fact that the most of the mathematical models of many real
problems in Sciences, Engineering and Technology (for example the Schrödinger
equation) consist only one frequency in the their model, it is of our interest the inves-
tigation of the stability of the obtained method when the frequency of the scalar test
equation for the stability analysis is equal with the frequency of the scalar test equation
for the phase-lag analysis i.e. when ω = φ or s = v (note that: s = ω h and v = φ h).
In these cases the investigation of the s−v plane is limited on the the surroundings
of the first diagonal of the s−v plane i.e. on the areas where s = v.

In the case s = v the characteristic equation for the method developed in Sect. 3.2
is given by:

4

(
48 (cos (v))2 + 25 sin (v) v − 46 cos (v) − 2

) (
2 λ cos (v) − λ2 − 1

)

v
(
24 (cos (v))2 v + 24 cos (v) sin (v) − cos (v) v + sin (v) − 48 v

) = 0

(34)

It is obvious from the above equation, that the roots of this equation are: λ1 =
exp(i v), λ2 = exp(−i v) (where i = √−1) i.e. |λ1| = |λ2| = 1 and the method is
P-stable.

The above remark leads to the following result:

– For the case where s = v (i.e. see the surroundings of the first diagonal of the s−v

plane), the interval of periodicity for the new obtained method in Sect. 3.1 is equal
to: (0, 23).

– For the case where s = v (i.e. see the surroundings of the first diagonal of the
s−v plane), the interval of periodicity for the new produced method in Sect. 3.2
is equal to: (0,∞), i.e. the method is P-stable.

The above investigation leads to the following theorem:

Theorem 3 For the obtained methods in Sect. 3 we have the following conclusions:

1. Two-Stage Symmetric Two-Step Method obtained in Sect. 3.1
– is of eighth algebraic order,
– has the phase-lag and its first, second and third derivatives equal to zero
– has an interval of periodicity equals to: (0, 23), when the frequency of the

scalar test equation used for the phase-lag analysis is equal with the frequency
of the scalar test equation used for the stability analysis

– is of low computational cost since has only 3 stages.
2. Two-Stage Symmetric Two-Step Method obtained in Sect. 3.2

– is of sixth algebraic order,
– has the phase-lag and its first and second derivatives equal to zero
– has an interval of periodicity equals to: (0,∞), i.e. is P-stable, when the

frequency of the scalar test equation used for the phase-lag analysis is equal
with the frequency of the scalar test equation used for the stability analysis

– is of low computational cost since has only 3 stages.
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6 Numerical results

6.1 Error estimation

The numerical solution of a problem using variable-step procedure, requests an error
estimation scheme. Much investigation has been done the last decades on the esti-
mation of the local truncation error (LTE) for the approximate solution of systems of
differential equations (see for example [1–65]).

Our methodology for the local error estimation will be based on the algebraic order
of the methods (there are several other methodologies which will be used in other
papers when we will develop the appropriate numerical methods). The methodology
of the local error estimation leads to an embedded pair. In this paper we develop an
embedded pair which is based on the algebraic order of the participant symmetric
multistep methods and on the fact that the maximum algebraic order of a symmetric
multistep method obtains highly accurate approximate solutions of problems with
oscillatory and/or periodical solution.

The local truncation error in yL
n+1 is estimated by

LT E =
∣∣∣yH

n+1 − yL
n+1

∣∣∣ (35)

yL
n+1 denotes the lower algebraic order solution and we use for this the symmetric
two-stages two-step P-stable method of sixth algebraic order developed in Sect. 3.2
and yH

n+1 denotes the higher order solution and we use for this symmetric two-stages
two-step method of eighth algebraic order obtained in Sect. 3.1.

The formula which gives the estimated step length for the (n + 1)st step, which
would give a local error equal to acc, is given by

hn+1 = hn

( acc

LT E

) 1
q

(36)

where q is the algebraic order of the method, hn is the step length used for the nth step
and acc is the requested accuracy of the local error.

Remark 8 We use the local extrapolation technique. With this procedure we accept at
each point the higher algebraic order solution yH

n+1 , as approximation, while the local
error is controlled using the lower algebraic order solution yL

n+1 for an estimation of
the local error less than acc.

6.2 Coupled differential equations

There are lot of problems in quantum chemistry, material science, theoretical physics,
atomic physics, physical chemistry, theoretical chemistry and chemical physics which
are expressed with mathematical models which contain coupled differential equations
of the Schrödinger type.

The close-coupling differential equations of the Schrödinger type can be written
as:
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[
d2

dx2
+ k2i − li (li + 1)

x2
− Vii

]
yi j =

N∑

m=1

Vim ymj (37)

for 1 ≤ i ≤ N and m �= i .
We will investigate the case in which all channels are open. Therefore, we have the

following boundary conditions: (see for details [58]):

yi j = 0 at x = 0 (38)

yi j ∼ ki x jli (ki x)δi j +
(

ki

k j

)1/2

Ki j ki xnli (ki x) (39)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.

Remark 9 We note here that the new obtained low cost method can also be used for
the case of closed channels.

The detailed analysis presented in [58] is our guideline for our application. We
define a matrix K ′ and diagonal matrices M , N as:

K ′
i j =

(
ki

k j

)1/2

Ki j

Mi j = ki x jli (ki x)δi j

Ni j = ki xnli (ki x)δi j

Based on the above we can write the asymptotic condition (39) as:

y ∼ M + NK′ (40)

Remark 10 The detailed description of the problem can be found in [58]. The Iterative
Numerov method of Allison is also described in the same paper.

The model of the real problem of rotational excitation of a diatomic molecule by
neutral particle impact can be expressed by close-coupling differential equations of the
Schrödinger type. This problem occurs frequently in quantum chemistry, theoretical
physics, material science, atomic physics and molecular physics. Denoting, as in [58],
the entrance channel by the quantum numbers ( j, l), the exit channels by ( j ′, l ′), and
the total angular momentum by J = j + l = j ′ + l ′, we find that

[
d2

dx2
+ k2j ′ j − l ′(l ′ + 1)

x2

]
y J jl

j ′l ′ (x)

= 2μ

h̄2

∑

j ′′

∑

l ′′

〈
j ′l ′; J | V | j ′′l ′′; J

〉
y J jl

j ′′l ′′(x) (41)

where

k j ′ j = 2μ

h̄2

[
E + h̄2

2I

{
j ( j + 1) − j ′( j ′ + 1)

}]
(42)
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E is the kinetic energy of the incident particle in the center-of-mass system, I is the
moment of inertia of the rotator, and μ is the reduced mass of the system.

As analyzed in [58], the potential V can be expanded as

V
(

x, k̂ j ′ j k̂ j j

)
= V0(x)P0

(
k̂ j ′ j k̂ j j

)
+ V2(x)P2

(
k̂ j ′ j k̂ j j

)
, (43)

and the coupling matrix element may then be written as
〈
j ′l ′; J | V | j ′′l ′′; J

〉 = δ j ′ j ′′δl ′l ′′ V0(x) + f2
(

j ′l ′, j ′′l ′′; J
)

V2(x) (44)

where the f2 coefficients can be obtained from formulas given by Bernstein et al. [59]
and k̂ j ′ j is a unit vector parallel to the wave vector k j ′ j and Pi , i = 0, 2 are Legendre
polynomials (see for details [60]). The boundary conditions are

y J jl
j ′l ′ (x) = 0 at x = 0 (45)

y J jl
j ′l ′ (x) ∼ δ j j ′δll ′ exp[−i(k j j x − 1/2lπ)]

−
(

ki

k j

)1/2

S J (
jl; j ′l ′

)
exp

[
i
(
k j ′ j x − 1/2l ′π

)]
(46)

where the scattering S matrix is related to the K matrix of (39) by the relation

S = (I + iK)(I − iK)−1 (47)

An numerical scheme which includes a numerical method for step-by-step integration
from the initial value to matching points is needed in order to compute the cross
sections for rotational excitation of molecular hydrogen by impact of various heavy
particles. For the purpose of our numerical tests we will use a scheme which is based
on the similar algorithm which has been produced for the numerical tests of [58].

For numerical purposes we choose the S matrix which is calculated using the
following parameters

2μ

h̄2 = 1000.0,
μ

I
= 2.351, E = 1.1,

V0(x) = 1

x12
− 2

1

x6
, V2(x) = 0.2283V0(x).

As is described in [58], we take J = 6 and consider excitation of the rotator from
the j = 0 state to levels up to j ′ = 2, 4 and 6 giving sets of four, nine and sixteen
coupled differential equations, respectively. Following the procedure obtained by
Bernstein [60] and Allison [58] the potential is considered infinite for values of x less
than some x0. The wave functions then zero in this region and effectively the boundary
condition (45) may be written as

y J jl
j ′l ′ (x0) = 0 (48)
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For the numerical solution of this problem we have used the most well known
methods for the above problem:

– the Iterative Numerov method of Allison [58] which is indicated as Method I,
– the variable-step method of Raptis and Cash [61] which is indicated as Method

II,
– the embedded Runge–Kutta Dormand and Prince method 5(4) [53] which is indi-
cated as Method III,

– the embedded Runge–Kutta method ERK4(2) developed in Simos [62] which is
indicated as Method IV,

– the embedded symmetric two-step method developed in [63] which is indicated
as Method V,

– the new developed low cost embedded symmetric two-step method which is indi-
cated as Method VI.

The real time of computation required by themethods mentioned above to calculate
the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled differential
equations is presented in Table. In the same table the maximum error in the calculation
of the square of the modulus of the S matrix is also presented. In Table 1 N indicates
the number of equations of the set of coupled differential equations.

Table 1 Coupled differential
equations

Real time of computation (in
seconds) (RTC) and maximum
absolute error (MErr) to
calculate |S|2 for the
variable-step methods Method
I–Method V. acc = 10−6. We
note that hmax is the maximum
stepsize

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2 × 10−3

9 0.014 23.51 5.7 × 10−2

16 0.014 99.15 6.8 × 10−1

Method II 4 0.056 1.55 8.9 × 10−4

9 0.056 8.43 7.4 × 10−3

16 0.056 43.32 8.6 × 10−2

Method III 4 0.007 45.15 9.0 × 100

9

16

Method IV 4 0.112 0.39 1.1 × 10−5

9 0.112 3.48 2.8 × 10−4

16 0.112 19.31 1.3 × 10−3

Method V 4 0.448 0.14 3.4 × 10−7

9 0.448 1.37 5.8 × 10−7

16 0.448 9.58 8.2 × 10−7

Method VI 4 0.448 0.07 2.8 × 10−7

9 0.448 1.14 4.3 × 10−7

16 0.448 8.39 7.1 × 10−7
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7 Conclusions

In this paper we developed a family of low computational cost two-stages symmetric
two-step methods. The analysis of the new family of methods consists of:

1. We presented the development of the following methods
– The first method is of eighth algebraic order and has the phase-lag and its first,
second and third derivatives vanished.

– The secondmethod is of sixth algebraic order, is P-stable and has the phase-lag
and its first and second derivatives vanished.

2. We studied the comparative local truncation error analysis.
3. We investigated the stability properties of the new family of methods using a scalar

test equation with frequency different than the frequency used by the scalar test
equation for the phase-lag analysis.

4. We finally studied the computational efficiency of the new family of methods
applying it on the approximate solution of the coupled differential equations arising
from the Schrödinger equation.

As a conclusion of this researchwe can see that the new family ofmethods produces
an embedded pair which is much more efficient than known ones for the numerical
solution of the Schrödinger equation and related problems..

All computations were carried out on a IBMPC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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Appendix: Formulae of the derivatives of qn

Formulae of the derivatives which presented in the formulae of the Local Truncation
Errors:

y(2)
n = (V (x) − Vc + G) y(x)

y(3)
n =

(
d

dx
g (x)

)
y (x) + (g (x) + G)

d

dx
y (x)

y(4)
n =

(
d2

dx2
g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x) + (g (x) + G)2 y (x)

y(5)
n =

(
d3

dx3
g (x)

)
y (x) + 3

(
d2

dx2
g (x)

)
d

dx
y (x) + 4 (g (x) + G) y (x)

d

dx
g (x)

+ (g (x) + G)2
d

dx
y (x)
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y(6)
n =

(
d4

dx4
g (x)

)
y (x) + 4

(
d3

dx3
g (x)

)
d

dx
y (x) + 7 (g (x) + G) y (x)

d2

dx2
g (x)

+ 4

(
d

dx
g (x)

)2

y (x) + 6 (g (x)+G)

(
d

dx
y (x)

)
d

dx
g (x)+(g (x)+G)3 y (x)

y(7)
n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4
g (x)

)
d

dx
y (x) + 11 (g (x) + G) y (x)

d3

dx3
g (x)

+ 15

(
d

dx
g (x)

)
y (x)

d2

dx2
g (x) + 13 (g (x) + G)

(
d

dx
y (x)

)
d2

dx2
g (x)

+ 10

(
d

dx
g (x)

)
2 d

dx
y (x)+9 (g (x)+G)2 y (x)

d

dx
g (x)+(g (x)+G)3

d

dx
y (x)

y(8)
n =

(
d6

dx6
g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x) + 16 (g (x) + G) y (x)

d4

dx4
g (x)

+ 26

(
d

dx
g (x)

)
y (x)

d3

dx3
g (x) + 24 (g (x) + G)

(
d

dx
y (x)

)
d3

dx3
g (x)

+ 15

(
d2

dx2
g (x)

)2

y (x) + 48

(
d

dx
g (x)

) (
d

dx
y (x)

)
d2

dx2
g (x)

+ 22 (g (x) + G)2 y (x)
d2

dx2
g (x) + 28 (g (x) + G) y (x)

(
d

dx
g (x)

)2

+12 (g (x) + G)2
(

d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)4 y (x) . . .
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